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A reduction in floral resource abundance and diversity is
generally observed in agro-ecosystems, along with widespread
exposure to pesticides. Therefore, a better understanding on
how the availability and quality of pollen diets can modulate
honeybee sensitivity to pesticides is required. For that purpose,
we evaluated the toxicity of acute exposure and chronic
exposures to field realistic and higher concentrations of
azoxystrobin (fungicide) and sulfoxaflor (insecticide) in
honeybees provided with pollen diets of differing qualities
(named S and BQ pollens). We found that pollen intake
reduced the toxicity of the acute doses of pesticides. Contrary
to azoxystrobin, chronic exposures to sulfoxaflor increased by
1.5- to 12-fold bee mortality, which was reduced by pollen
intake. Most importantly, the risk of death upon exposure to a
high concentration of sulfoxaflor was significantly lower for
the S pollen diet when compared with the BQ pollen diet. This
reduced pesticide toxicity was associated with a higher gene
expression of vitellogenin, a glycoprotein that promotes bee
longevity, a faster sulfoxaflor metabolization and a lower
concentration of the phytochemical p-coumaric acid, known to
upregulate detoxification enzymes. Thus, our study revealed
that pollen quality can influence the ability of bees to
metabolize pesticides and withstand their detrimental effects,
providing another strong argument for the restoration of
suitable foraging habitat.
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1. Introduction
The availability of nutritive resources has long been acknowledged as a key ecological factor affecting
the expression of several life-history traits [1]. Notably, the quantity and balance of macro- and
micronutrients, as well as secondary metabolites, in the diet of insects, can determine their longevity
and ability to respond to environmental pressures, such as xenobiotics [1]. For instance, variation in
the protein : carbohydrate ratio can modulate their sensitivity to toxins [2], and secondary metabolites
may increase their tolerance to various pesticides by stimulating the production of detoxification
enzymes [3,4]. In this context, the contribution of resource availability and quality to the overall
health of honeybees (Apis mellifera), a major pollinator of crops and wild plants [5], has received
increased attention [6–8]. Indeed, like many organisms, their environment has rapidly changed under
the influence of human activity. They are thus exposed to more frequent and diverse sources of stress,
including pesticides, along with a reduction of floral resource abundance and diversity due to
landscape simplification and habitat loss [9].

Among the different stress factors threatening honeybee colonies, pesticides have attracted most
of the attention and debate [10–12]. The toxicity of a large range of pesticides has been documented
[13–19]. Research on the modulation of pesticide toxicity by nutritional factors, while still in its
infancy, could lead to a better understanding of the impact of pesticides on honeybee populations and
the design of more supportive habitats. The amount of nutrients in nectar and pollen can indeed
differ between plant species (6.3–85% for sugar concentration in nectars [20], and 2.5–61% and 1–20%
for protein and lipid contents in pollens, respectively [21,22]). In addition, both pollen and nectar are
nutritional sources of several amino acids, minerals, micronutrients and secondary metabolites [8,23].
As a consequence, the quality of honeybee diets varies greatly over time and according to landscape
features [24,25]. Therefore, these variations in nutritional content may provide a basis for nutritional
modulation of pesticide toxicity.

Confirmation of this hypothesis was tested for nectar by providing bees with limited access or access
to low concentrations of sugar. The survival of bees was synergistically reduced by the combination of
poor nutrition and field-realistic exposure to neonicotinoids (−50%) [26]. However, most of data on the
nutritional modulation of pesticide toxicity come from studies that have tested pollen diets, probably
because pollen is essential to the physiological development of bees [6,27–29]. Wahl & Ulm [30] were
the first to report that feeding bees with pollen increased their tolerance to pesticides. They notably
found that pollen intake as well as the quality of pollen (protein content) increased the median lethal
dose (LD50) of several pesticides [30]. Later, Schmehl et al. [31] demonstrated that pollen intake
reduced bee sensitivity to chronic exposure to chlorpyrifos compared with bees fed without pollen.
At the same time, Archer et al. [32] showed that bees having access to an artificial protein-rich diet
were more able to withstand nicotine exposure than bees provided with a protein-poor diet. More
recently, Crone & Grozinger [33] found that artificial and pollen diets characterized by different
protein to lipid ratios can influence the survival time of bees chronically exposed to chlorpyrifos.
Endpoints other than mortality rate have been used to assess the influence of pollen quality and
availability on pesticide sensitivity in honeybees (development of feeding glands [34]), as well as in
bumblebees (micro-colony performance, nest founding [35–37]) and Osmia (reproduction [38]);
however, these studies generally reported a lack of interactions between these two factors.

Regarding the potential mechanisms underlying this nutritional modulation of pesticide sensitivity,
pollen intake upregulates the expression of several xenobiotic-metabolizing cytochrome P450 genes [31],
as well as the activity of glutathione S-transferases [39], which are involved in Phases I and II of the
detoxification pathways, respectively [40–42]. More specifically, upon ingestion, several constituents of
pollen, like the phytochemicals p-coumaric acid and quercetin, can upregulate the expression of
cytochrome P450 genes [43,44] and increase the survival rate of bees exposed to pesticides [3,45–47].
Such an effect on the detoxification capacity of bees was further confirmed by measuring pesticide
metabolism. Ardalani et al. [48] found a reduction in the concentration of imidacloprid in honeybee
bodies fed with quercetin, although no effect was observed on the reduction in the concentration of
tebuconazole or tau-fluvalinate. Similarly, adding p-coumaric acid to a sucrose diet led to faster
coumaphos disappearance [43]. Overall, these studies indicate that pollen may influence the ability of
bees to metabolize pesticides, which was recently confirmed [49]. Lastly, we cannot exclude an influence
of pollen on the ability of bees to withstand the effects of pesticides, given that the impact of pesticides
depends not only on the fate of the molecule in the body (uptake, distribution, biotransformation,
elimination), but also on its interaction with the biological target and effects at the physiological level.
Due to its positive effect on bee longevity and on several molecular pathways and physiological
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functions (e.g. energy storage, immunocompetence, nutrient metabolism, protection against oxidative
stress) [50–53], pollen consumption might help bees to better tolerate the wide range of physiological
impairments caused by pesticides, notably on nutrient metabolism, immunity, cell signalling and
developmental processes [31,54–57].

In sum, it was found that pollen nutrition can influence the survival rate of pesticide-exposed bees
and the metabolization of pesticides. However, the nutritional modulation of pesticide sensitivity
and the underlying mechanisms have been rarely studied together. To further examine the influence
of pollen on pesticide sensitivity and the underlying mechanisms, we provided bees with pollen of
different qualities (protein, lipid, p-coumaric acid contents) or no pollen and then exposed them
to either sulfoxaflor, a new neurotoxic insecticide that shares the same mode of action with
neonicotinoids [58,59], or azoxystrobin, an inhibitor of mitochondrial respiration in fungi and one of
the most frequently detected fungicides in pollen collected by bees (34–87.5% of samples) [60]. We
then determined whether the survival of bees exposed to a single dose of pesticide (previously
identified as the median lethal dose) or chronically to field realistic and higher concentrations of
pesticides is affected by pollen intake and/or the quality of pollens. Finally, we investigated the
mechanisms underlying the modulation of pesticide sensitivity by testing whether pollen
consumption induces a decrease in the concentration of pesticides in bees and/or help to tolerate the
detrimental effect of pesticides on bee vitality. The latter was determined by measuring the gene
expression level of vitellogenin, a well-established marker of bee health and longevity [61,62].
:210818
2. Material and methods
2.1. Pollen diet quality
In order to assess the influence of pollen intake and pollen quality on bee sensitivity to pesticides, we
used two pollen blends that differed regarding their nutritional properties: one predominantly
composed of Brassicaceae (36%) and Quercus robur (35%) (BQ pollen), and the other primarily
composed of Salix (89%) (S pollen) (see electronic supplementary material, table S1 for the pollen
species composition). They were purchased fresh from Abeille heureuse® (France). We analysed
protein and lipid content and their ratio following protocols detailed in [22]. The BQ pollen had
higher protein and lipid content (respectively, 28.39 ± 0.72% and 18.7 ± 1.6%, n = 9) than the S pollen
(21.49 ± 1.05% and 14.07 ± 1.5%, n = 9). The protein : lipid ratio was similar between pollen mixes (BQ
pollen: 1.52 and S pollen: 1.53). We also determined the concentrations of both phytochemicals,
p-coumaric acid and quercetin (see electronic supplementary material). The p-coumaric acid
concentrations reached 244.7 mg kg−1 (1491.6 µM) in the BQ pollen and 104.5 mg kg−1 (637 µM) in the
S pollen. The level of quercetin was under the quantification limit of the analysis method for both
pollens, i.e. below 10 mg kg−1. The presence of pesticide residues in one extract of each pollen blend
was determined by liquid chromatography–tandem mass spectrometry (LC-MS/MS) with a limit of
quantification (LOQ) of 0.01 mg kg−1 and a limit of detection of 0.005 mg kg−1 following the European
Standard EN 15662:2018 procedure (see electronic supplementary material, table S2 for the list of
analysed pesticides). Only residues of 2,4-dimethylformamide (DMF, degradation products of amitraz)
and tau-fluvalinate were detected in both pollen blends but were below the LOQ. These compounds
used as chemical treatments against the honeybee parasite Varroa destructor are consistently found in
pollens (47.4% and 88.3% of trapped pollens for amitraz and tau-fluvalinate, respectively; [63,64]) and
are considered as relatively safe for honeybees with an oral LD50 of 75 µg/bee for amitraz (contact
exposure) and 45 µg/bee for tau-fluvalinate (oral exposure) [65]. Both pollen blends were gamma
irradiated to avoid parasite contamination and stored at −20°C.
2.2. Influence of pollen nutrition on honeybee sensitivity to pesticides
Experiments were performed at the Institut National de la Recherche Agronomique (INRAE) in a semi-
urban area (Avignon, France, 43°540 N–4°520 E) with honeybees (Apis mellifera) from our local apiary.
To obtain 1-day-old bees, brood frames containing late-stage pupae were removed from 8 to 10
colonies (depending on the experiments) and kept overnight in an incubator under controlled
conditions (34°C, 50–70% relative humidity (RH)). The next day, newly emerged bees (less than 1 day
old) were collected, mixed and placed in cages (10.5 × 7.5 × 11.5 cm) [66]. To better simulate colony
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rearing conditions, cages were equipped with Beeboost® (Ickowicz, France), releasing one queen-
equivalent of queen mandibular pheromone per day.

Caged bees were kept in an incubator (30°C and 50–70% RH) and provided with water and Candy
(Apifonda® + powdered sugar) ad libitum. Except of the control groups, bees were also provided with
one of the fresh pollen blends (BQ or S pollens) via an open tube feeder for 7 days. To prevent a
potential nutritive compensation of bees fed with one of the pollens, they were not provided with ad
libitum pollen, but with a determined quantity of pollen each day, representing the minimal daily
consumption of pollen: 4 mg/bee/day for the first 2 days, 5 mg/bee/day for the next 2 days, 3 mg/
bee/day for the 5th day and 2 mg/bee/day for the last 2 days, as described in Di Pasquale et al. [39].
If some bees died during the pollen-feeding period (7 days), pollen amount was adjusted to the
number of surviving bees. Both pollen diets were fully consumed every day.

2.2.1. Acute single exposure

In the first experiment, we tested whether pollen intake and pollen quality could modify the sensitivity
of bees to a single dose of pesticide previously identified as an LD50 (M Medrzycki, G Di Prisco, V Strobl,
O Yañez, P Neumann 2019, unpublished data). Groups of 20 one-day-old bees were placed in cages,
which were randomly assigned to the different experimental groups: control (sucrose solution only),
BQ pollen, S pollen, azoxystrobin, sulfoxaflor, BQ pollen/azoxystrobin, S pollen/azoxystrobin, BQ
pollen/sulfoxaflor and S pollen/sulfoxaflor (n = 10 cages per experimental group).

On day 5, bees were sugar-starved for 2 h and then fed with a solution of 50% (w/v) sucrose and
azoxystrobin (4600 µg ml−1, 1.14% acetone) or sulfoxaflor (3.67 µg ml−1, 0.37% acetone) according to
the experimental group. Sugar solutions were provided via a feeding tube with a hole at its extremity.
Each treated cage received 200 µl of the solution laced with pesticides. Solutions were provided for 4 h
and all of them were consumed within this time period. Assuming that the bees equally consumed
the solutions, pesticide treatments resulted in a theoretical exposure to 46 µg/bee of azoxystrobin and
36.7 ng/bee of sulfoxaflor, corresponding to the LD50 levels previously determined. Control groups
were fed with pesticide-free sugar solution (50% w/v sucrose, 1% acetone). After exposure to
pesticides, bees were provided with water and Candy (Apifonda® + powdered sugar) ad libitum.
Mortality was recorded 48 h after exposure.

Stock solutions of sulfoxaflor (Techlab, France) and azoxystrobin (Sigma Aldrich, France) in acetone
were previously aliquoted and conserved at −20°C. The exact concentrations were confirmed with
LC-MS/MS (see below) and resulted in 5746 µg ml−1 for azoxystrobin and 3.62 µg ml−1 for sulfoxaflor,
which corresponds to a real exposure of 57.5 µg/bee and 36.2 ng/bee, respectively.

2.2.2. Chronic exposure

In the second experiment, bees were chronically exposed to two concentrations of pesticides: a
concentration that was considered to be field realistic and a higher concentration representing a worst-
case exposure scenario. Groups of 30 one-day-old bees were placed in cages (n = 10 cages per
experimental group) and treatment groups were provided with one of the pollen blends as described
above. On day 5, caged bees were provided with a solution of 50% (w/v) sucrose, 0.1% acetone and
azoxystrobin or sulfoxaflor at either a low or high environmental concentration which corresponded
to theoretical values of 0.02 and 2 µg ml−1 for sulfoxaflor and 0.2 and 2 µg ml−1 for azoxystrobin
according to the experimental group. Control groups were fed with pesticide-free sugar solution
(50% w/v sucrose, 0.1% acetone). The concentrations were chosen based on pesticide residue data
found in pollen and nectar. Different application rates of sulfoxaflor before or during flowering of
cotton resulted in 6.6–13.8 ppb of sulfoxaflor in nectar and 7.7–39.2 ppb in pollen of cotton flowers
[67]. However, other field residue studies with cotton, buckwheat and phacelia reported higher levels
of sulfoxaflor ranging from 0.05 to 1 ppm in nectar and from 0.22 to 2.78 ppm in pollen collected by
honeybees during the flowering period [68,69]. Azoxystrobin was found at levels ranging from 0.03
to 0.11 ppm in pollen collected by honeybees in North America [64]. In France, these levels ranged
from 0.01 to 1.9 ppm (Observatory of Pesticide Residue, ITSAP—Institut de l’Abeille 2014, personal
communication). The chronic pesticide treatments were performed over 10 days and the syrup feeders
were replaced every day. For each cage, individual syrup consumption was assessed daily by
weighing feeders and dividing the consumed food by the number bees remaining alive. The
cumulated syrup consumption over the 10 days of exposure to pesticide was then determined. After
exposure to pesticides, bees were provided with water and Candy (Apifonda® + powdered sugar) ad
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libitum. Dead bees were counted daily and removed over a 16-day period (i.e. when the high sulfoxaflor
concentration group reached 100% mortality). Following the chemical analyses (LC-MS/MS), the real
concentrations of tested diets resulted in 0.02 and 2.35 µg ml−1 for sulfoxaflor and 0.22 µg ml−1 and
1.90 µg ml−1 for azoxystrobin, respectively, for the low and high exposure rates.

2.3. Potential mechanisms underlying the nutritional modulation of pesticide sensitivity
In order to investigate the mechanisms underlying the beneficial effect of pollen on pesticide sensitivity,
we compared the gene expression level of vitellogenin and the amount of pesticide among groups.
Groups of 80 one-day-old bees were placed in cages and, as above, fed with one of the pollen diets
(n = 10 cages per experimental group). On day 5, bees were sugar-starved for 2 h and then fed with
the highest concentration of azoxystrobin and sulfoxaflor (2 µg ml−1), or sugar solution only. Each
cage received 800 µl of sugar solution. Solutions were provided for 4 h and all of them were
consumed within this time period, giving a theoretical dose of 20 ng of pesticide per bee (19 ng of
azoxystrobin and 23.5 ng of sulfoxaflor based on the real concentration of the tested solution, see
above). After exposure to pesticides, bees were provided with water and Candy (Apifonda® +
powdered sugar). At 8 and 24 h post-exposure (i.e. once all the solutions were consumed), 25 and 35
bees per cage were, respectively, sampled on dry ice and stored at −80°C for later analysis.

2.3.1. Influence of pollen nutrition and pesticides on vitellogenin expression level

For each cage, the abdomens of six bees sampled at 24 h post-exposure were pooled in groups of
three. Abdomen pools were homogenized in 800 µl of Qiazol reagent (Qiagen) with a Tissue Lyser
(Qiagen) (4 × 30 s at 30 Hz). RNA extraction was then carried out as indicated in the RNeasyPlus
Universal kit (Qiagen) with DNase treatment (Qiagen). RNA yields were measured with a Nanodrop
(Thermo Scientific) and cDNA synthesis was carried out on 1 µg of RNA per sample using the High
capacity RNA to cDNA kit (Applied Biosystems®, Saint Aubin, France). cDNA samples were diluted
10-fold in molecular grade water. The expression level of vitellogenin was determined by quantitative
PCR using a Step One-Plus Real-Time PCR System (Applied Biosystems) and the SYBR green
detection method. Three microlitres of cDNA were mixed with 5 µl SYBR Green Master Mix, 1 µl of
forward primer (10 µmol) and 1 µl of reverse primer (10 µmol) of the target gene. A dissociation stage
for the subsequent melting curve analysis was included. All qPCR reactions were run in duplicate.
The average cycle threshold values of vitellogenin were normalized to the geometric mean of the
housekeeping genes actin and RPS18, which proved to have rather stable expression levels [70].
We used sequences of primers previously published [71,72]. The ΔCt value of each group was
subtracted by the ΔCt value of the control group (sugar syrup only) to yield ΔΔCt.

2.3.2. Influence of pollen nutrition on pesticide detoxification

Pesticide concentrations were analysed on a pool of 25 bees per cage and time point in the following
groups: sulfoxaflor, azoxystrobin, BQ pollen/sulfoxaflor, BQ pollen/azoxystrobin, S pollen/sulfoxaflor,
S pollen/azoxystrobin.

Sulfoxaflor and azoxystrobin content were analysed via LC-MS/MS. The QuEChERS method was
used for the extraction of the active ingredients from samples, following the European Standard EN
15662. Briefly, samples were ground in liquid nitrogen and 2 g of the crushed sample was mixed with
15 ml of a 1 : 2 water and acetonitrile mixture and a bag containing 4 g of magnesium sulfate, 1 g of
sodium chloride, 1 g of sodium citrate tribasic dihydrate and 0.5 g of sodium citrate dibasic
sesquihydrate. An aliquot of the supernatant was mixed with 900 mg of magnesium sulfate, 150 mg
of PSA and 150 mg of C18-E. After centrifugation, 2 µl of extract was injected into an Accela 1250
ultra-high performance liquid chromatography (UHPLC) system for sulfoxaflor or azoxystrobin
detection. The UHPLC system was coupled to a TSQ Quantum Access MAX Triple-Stage Quadrupole
Mass Spectrometer, equipped with a heated-electrospray ionization (H-ESI) source working in positive
polarity. The mobile phase used for the analysis consisted of 4 mM ammonium formate in water and
4 mM ammonium formate in MeOH, both containing 0.1% formic acid. The fragments analysed were
at m/z 372.1; 329.1; 344.1 (products) generated by the ion at m/z 404.12 (parent, azoxystrobin), and the
fragments at m/z 154.1 and 104.2 (products) generated by the ion at m/z 278.1 (parent, sulfoxaflor).
Quantification was performed using acetamiprid as an internal standard. The LOQ for azoxystrobin
and sulfoxaflor was 0.001 mg kg−1 and 0.01 mg kg−1, respectively.
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2.4. Statistical analysis
Datawere analysed using the statistical software R v. 3.3.3 [73]. In the acute toxicity tests, the percentage of
dead bees in each cage was determined and each cage was considered as a replicate. Since data were not
normally distributed, the effect of pesticide and pollen treatments on bee mortality was analysed using
Kruskal–Wallis, followed by Dunn’s multiple comparison tests with the Benjamini–Hochberg
correction. Then, the epsilon squared (ε2) was computed to obtain a measure of effect size between
experimental groups (epsilonSquared function of the rcompanion package [74]). The interpretation values
were as follows: ε2 < 0.01: very small effect, 0.01 < ε2 < 0.08: small effect, 0.08 < ε2 < 0.26: medium effect
and ε2≥ 0.26: large effect [75]. Survival data from the chronic toxicity tests were analysed with a Cox
proportional hazards regression model (coxph function of the survival package in R [76]). Data were
transformed in a survival table and the remaining bees were considered alive at day 16. The Cox model
was used to calculate the hazard ratio (HR). The HR is defined as the ratio between the instantaneous
risk in the treatment group (H1) and the risk in the control group (H0), occurring at a given time
interval [77]. The influence of experimental treatments on the cumulated syrup consumption,
vitellogenin expression level and pesticide detoxification was analysed using Kruskal–Wallis, followed
by Dunn’s multiple comparison tests with the Benjamini–Hochberg correction.
n
Sci.8:210818
3. Results
3.1. Influence of pollen nutrition on honeybee sensitivity to pesticides

3.1.1. Acute single exposure

The dose of azoxystrobin significantly increased the mortality of bees that did not have access to pollen
(Kruskal–Wallis test: p < 0.05, and Dunn post hoc tests: p < 0.05; figure 1a). Although only 10% of bees
were found dead 48 h post-exposure (versus 0% in control groups), the size of the negative effect of
azoxystrobin could be considered as medium (ε2 = 0.163; table 1). Azoxystrobin did not increase bee
mortality in bees fed with either the BQ or S pollen diets (Dunn post hoc tests: p = 0.41 and p = 0.79 for
BQ and S pollen, respectively; figure 1a). However, bee mortality did not differ between the different
pollen diets (no pollen, BQ and S pollen) after exposure or not to azoxystrobin (figure 1a).

Sulfoxaflor increased the mortality of bees over 48 h (Kruskal–Wallis test, p < 0.01; figure 1b). For
instance, the dose of sulfoxaflor killed around 50% of the bees that did not ingest pollen (figure 1b).
However, sulfoxaflor toxicity was also reduced by pollen consumption. First, the sulfoxaflor-induced
mortality was significantly lower in bees fed with BQ or S pollen diets than in bees fed without
pollen (BQ pollen: p < 0.05 and S pollen: p < 0.05). Second, the sulfoxaflor toxicity was reduced by half
in bees provided with pollen (BQ pollen: ε2 = 0.183, S pollen: ε2 = 0.143—medium effect) when
compared with bees fed without pollen (ε2 = 0.277—large effect; table 1).

Ultimately, the two types of pollen diet did not differentially affect the acute toxicities of azoxystrobin
and sulfoxaflor (BQ pollen versus S pollen: p = 1.0 for azoxystrobin and sulfoxaflor; figure 1a,b).

3.1.2. Chronic exposure

In the azoxystrobin experiment, we found that, regardless of exposure to pesticides, bees provided with
pollen consumed more syrup than bees who did not receive pollen (Kruskal–Wallis test: p < 0.001;
figure 2a). However, besides the non-intoxicated bees who consumed less syrup than intoxicated bees
in the BQ pollen groups, there was no difference in syrup consumption between pesticide treatments
for a given pollen diet. In the sulfoxaflor experiment, the pollen effect on syrup consumption was
only found in non-intoxicated bees: bees without pollen consumed less syrup than bees with pollen
(Kruskal–Wallis test: p < 0.001; figure 2b). At the low and high concentration of sulfoxaflor, pollen
diets did not affect syrup consumption. The main variation in syrup consumption was due to the
high concentration of sulfoxaflor. Bees exposed to 2 ppm of sulfoxaflor consumed less syrup than bees
exposed to 0 or 0.02 ppm of sulfoxaflor (although it was not significant for the BQ pollen groups).

Chronic exposure to azoxystrobin (0.2–2 ppm) did not affect bee survival whether bees consumed
pollen or not (Cox model, p = 0.17; figure 3a). However, both sulfoxaflor concentrations decreased bee
survival (Cox model, p < 0.001, figure 3b). While, in bees fed without pollen, the highest concentration
of sulfoxaflor (2 ppm) caused 100% bee mortality within 16 days, the lowest concentration (0.02 ppm)
reduced the survival probability by around 25%.
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Table 1. Effect size (ε2) of pesticide acute toxicity. The interpretation values are as follows: ε2 < 0.01: very small effect, 0.01 <
ε2 < 0.08: small effect, 0.08 < ε2 < 0.26: medium effect and ε2≥ 0.26: large effect. 95% CI, 95% confidence interval; p-values
are derived from post hoc Dunn tests.

comparison ε2 95% CI inf 95% CI sup p-value

control versus azoxystrobin 0.163 0.059 0.301 <0.05

BQ pollen versus BQ pollen + azoxystrobin 0.011 4.01 × 10−5 0.086 0.12

S pollen versus S pollen + azoxystrobin 0.001 3.73 × 10−5 0.117 0.70

control versus sulfoxaflor 0.277 0.149 0.395 <0.001

BQ pollen versus BQ pollen + sulfoxaflor 0.183 0.065 0.313 <0.001

S pollen versus S pollen + sulfoxaflor 0.143 0.031 0.273 <0.001
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The survival probability of bees over 16 days was enhanced by the S pollen (no pollen, p < 0.05), but
not by the BQ pollen ( p = 0.58), although no difference in survival was found between the two pollen
diets ( p = 0.14; figure 3b). The survival probability of bees intoxicated with the low concentration of
sulfoxaflor improved with pollen feeding (sulfoxaflor versus sulfoxaflor + BQ pollen: p < 0.001,
sulfoxaflor versus sulfoxaflor + S pollen: p < 0.001), but no difference was found between the two
pollen diets (sulfoxaflor + S pollen versus sulfoxaflor + BQ pollen: p = 0.68). As a consequence, if
sulfoxaflor (0.02 ppm) increased the risk of death in bees fed without pollen (HR = 1.53), feeding bees
BQ pollen or S pollen reversed this risk (BQ pollen: HR = 0.76; S pollen: HR = 1.07; figure 4).

Similarly, the consumption of pollen lowered the negative effect of the highest concentration of
sulfoxaflor (sulfoxaflor versus sulfoxaflor + BQ pollen: p < 0.001 and sulfoxaflor versus sulfoxaflor + S
pollen: p < 0.001). However, the improvement of bee survival was significantly higher when bees
consumed the S pollen when compared with the BQ pollen (sulfoxaflor + BQ pollen versus
sulfoxaflor + S pollen: p < 0.001; figure 3b). Overall, the consumption of BQ pollen and S pollen
decreased the mortality risk by 2- and 2.5-fold, respectively (BQ pollen: HR = 5.72, S pollen: HR =
4.79) compared with bees fed without pollen (HR = 12.01; figure 4).
3.2. Potential mechanisms underlying the nutritional modulation of pesticide sensitivity

3.2.1. Influence of pollen nutrition and pesticides on vitellogenin expression level

The expression level of vitellogenin was significantly affected by the different treatments (Kruskal–Wallis
test, p < 0.001; figure 5a,b). In bees not exposed to pesticide, pollen feeding increased vitellogenin
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expression but the effect was significantly stronger with the S pollen (approx. 30-fold) than with the BQ
pollen (approx. 8-fold, p < 0.001).

In all pollen treatments, we did not find any effect of azoxystrobin and sulfoxaflor exposure on
vitellogenin expression levels (no pollen, BQ pollen and S pollen: p = 1.0). However, after both
pesticide exposures, the level of vitellogenin remained significantly higher in bees fed with the S
pollen when compared with bees who consumed the BQ pollen ( p < 0.05).
3.2.2. Influence of pollen nutrition on pesticide detoxification

Residues of azoxystrobin were detected at very low concentrations at 8 h post-exposure in all treatment
groups (figure 6a). No significant difference was observed between experimental groups (Kruskal–Wallis
test, p = 0.71). Since azoxystrobin concentrations were close to the LOQ at 8 h post-exposure, samples at
24 h post-exposure were not analysed.
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Regarding sulfoxaflor, the concentrations of residues found in bees 8 h post-exposure were significantly
different between experimental groups (Kruskal–Wallis test, p < 0.01; figure 6b). The maximum
concentrations were found in bees fed only with sugar syrup (0.19 ± 0.02 mg kg−1). Consumption of
S pollen significantly decreased sulfoxaflor concentrations (0.13 ± 0.03 mg kg−1) compared with bees who
did not ingest pollen (1.5 times less, p < 0.01). The concentrations of sulfoxaflor in BQ pollen-fed bees
were intermediate (0.17 ± 0.04 mg kg−1) and did not differ from control (p = 0.11) and S pollen-fed bees
( p = 0.11). For each treatment group, the concentration of sulfoxaflor significantly decreased between 8
and 24 h post-exposure (Mann–Whitney test, p < 0.001 for each treatment group). It also differed between
treatment groups at 24 h post-exposure (Kruskal–Wallis test, p < 0.001). Sulfoxaflor concentration was
more than two times lower in bees fed with the S or BQ pollen diets than in bees fed without pollen
(S pollen: 0.04 ± 0.02 mg kg−1, BQ pollen: 0.03 ± 0.02 mg kg−1, and control: 0.10 ± 0.03 mg kg−1; p < 0.001
for both diets). Finally, no difference in sulfoxaflor concentration was found between the two pollen diets
at 24 h post-exposure ( p = 0.63).
R.Soc.Open
Sci.8:210818
4. Discussion
In the present study, we showed that pollen consumption, besides its well-known positive effect on
honeybee longevity [39,78], can reduce the mortality risk caused by pesticides across different
conditions of exposure. In addition, we found that the quality of pollen diets can substantially affect
the toxicity of pesticides. These results may help to explain the variability of responses often observed
at a given dose or concentration of pesticide [79].

Similar to Wahl & Ulm [30], the negative effect of an acute dose of pesticide was reduced by pollen
consumption. The tested dose of azoxystrobin was found to be non-lethal (over 48 h) to bees fed with
pollen, while it slightly increased the mortality level of bees fed without pollen. Interestingly, the LD50

of azoxystrobin determined during preliminary assays appeared to be less toxic here, providing
another example of response variability to pesticides. Experiments were performed in different years
and with different colonies (bee genetics), which probably explains the different responses across LD50

experiments [80]. Contrary to Wahl & Ulm [30], pollen quality did not influence the sensitivity of bees
to the tested doses of pesticides. This lack of effect here might be due to the doses or the pollen diets
we used. For instance, measurements should be repeated over a range of dosages to derive more
general conclusions about a potential influence of pollen quality. It is also possible that the differences
in our pollen diets were not strong enough to influence bee sensitivity to pesticides in the short term
(i.e. over 48 h). Similar differences in the nutritional quality of pollens were previously found to affect
the chronic susceptibility of honeybees to a parasitic infection [39], suggesting that effects might rather
be observed over the long term as confirmed by our chronic exposure experiment.

In the chronic exposure experiment, pollen diets increased the consumption of sugar syrup. Such results
are consistent with previous studies, which showed that in response to pollen nutrients, genes involved in
carbohydrate metabolism are upregulated [50,81]. This may reflect a higher energy demand since pollen
consumption stimulates tissue growth (e.g. hypopharyngeal glands and fat body) [6], which is an
energetically costly process. However, this phenomenon was not observed in bees exposed to sulfoxaflor.
Syrup consumption did not differ between pollen groups and thus bees provided with different pollen
diets were exposed to similar amounts of pesticides. Only bees exposed to the high concentration of
sulfoxaflor (2 ppm) tended to consume less syrup. There is now strong evidence for preference or
avoidance of sugar syrup laced with pesticides, and this food choice was found to be dependent on
pesticide concentration [82,83]. Even though bees are capable of taste perception [84], the underlying
mechanisms of food choice are not clearly known [82]. In our experiments, bees were not provided with
a food choice, but it is possible that sulfoxaflor at high concentration gives syrup a bitter taste as
previously found with high concentration of nicotine [85], which target nicotinic receptors like sulfoxaflor.

Survival data from the chronic exposure experiment further confirmed the beneficial effect of pollen on
tolerance to pesticides: the risk of death upon exposure to the low and high sulfoxaflor concentrations
disappeared or was significantly reduced by pollen feeding, respectively. This is in accordance with a
previous study, which showed that bees fed over several days with a pollen-based diet exhibit reduced
sensitivity to a daily exposure to chlorpyrifos [31]. Both pollen diets contained traces of DMF and tau-
fluvalinate (below the LOQ), introducing possible interactive effects with the experimental pesticides
[18]. However, this was not the case for azoxystrobin since no toxic effect was found on bee survival.
Regarding sulfoxaflor, it may have increased its toxicity but to a small extent, since survival upon
exposure to sulfoxaflor remained lower in bees fed without pollen than in bees provided with pollen.
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Interestingly, bees fed with the S pollen were less sensitive to the high sulfoxaflor concentration when
compared with the BQ pollen diet. This suggests that the quality of pollen diets can also affect their
capacity to tolerate chronic exposure to pesticides. The higher protective effect of S pollen might result
from an improved physiological state. For instance, regardless of exposure to pesticides, the expression
level of vitellogenin was much higher in bees fed with the S pollen when compared with bees provided
with the BQ pollen. As a glycoprotein with antioxidant functions that protects bees from oxidative stress
[86,87], vitellogenin promotes bee longevity but may also have reduced the effects of sulfoxaflor. Indeed,
a recent study found that sulfoxaflor increases the level of reactive oxygen/nitrogen species and thus
significantly elevates oxidative stress in bees [88]. The higher vitellogenin expression level induced by the
S pollen might have thus contributed to better protect bees from exposure to sulfoxaflor, assuming that
changes in transcript levels translated into different protein levels. This latter point is supported by the
significant decrease in haemolymph vitellogenin concentration upon inhibition of vitellogenin gene
activity via RNA interference [89], and the concomitant change in the gene and protein expression of
vitellogenin between nurses and foragers [90,91].

We did not find any pesticide-induced differences in vitellogenin levels between bees, both in the
presence or absence of a pollen diet. This suggests that the negative impact of pesticides on bee
survival does not involve a decline in vitellogenin level, although we cannot eliminate long-term
exposure effects. Reported effects of pesticides on vitellogenin in the literature have been contradictory
across studies, ranging from no effects (acute exposure to fipronil and deltamethrin [92]), to increasing
(chronic exposure to neonicotinoids [93]) and also inhibitory effects (chronic exposure to imidacloprid
[94]). This indicates that effects on vitellogenin may be quite variable and possibly depend upon
multiple factors, e.g. age of the bees, season, pesticide type and mode of exposure (acute, chronic).

In response to exposure to dietary toxins, organisms have developed elimination mechanisms (e.g.
detoxification) that prevent their accumulation in organs and tissues. How the body is able to handle
pesticides can, therefore, affect its pesticide sensitivity. The analysis of pesticide residues showed that
azoxystrobin was eliminated much faster than sulfoxaflor (approx. 100-fold difference between the
two pesticide concentrations at 8 h post-exposure), even though the same doses were given to bees.
The mechanisms underlying this faster metabolization of azoxystrobin are not known, but enzymes
from the detoxification pathways, like the cytochrome P450 monooxygenases, often exhibit substrate-
specificity. For instance, cytochrome P450 members of the CYPQ9 family were found to be responsible
for tau-fluvalinate metabolism [44]. Honeybees might thus possess cytochrome P450s that can dock
and metabolize azoxystrobin better than sulfoxaflor. This rapid azoxystrobin metabolization might
also contribute to its lower toxicity when compared with sulfoxaflor. However, since azoxystrobin is a
fungicide, we obviously cannot exclude that it is less efficient in reaching its biological target and/or
has a different mode of action in insects.

Finally, sulfoxaflor concentration decreased more quickly in bees fed with the S pollen when compared
with bees providedwith theBQpollen. This fastermetabolizationmay participate in the reduced sulfoxaflor
toxicity upon ingestion of the S pollen diet. Such results also confirm a recent study, which reported that
some pollens are better than others in promoting pesticide metabolization [49]. Different pollens have
different nutritional values, which generally translate into differences in bee physiology and longevity
[6,39,78,95,96]. Among the pollen nutrients that have positive effects on bee health, the amount of
protein plays a substantial role [6,97], although it does not result systematically in healthier bees,
especially regarding pathogen resistance [39]. Our study further indicates that the quality of pollen
should not only be estimated based on protein content since the S pollen had a lower concentration of
protein than the BQ pollen. For instance, the amount of other nutrients, such as amino acids, sterols,
vitamins, minerals and nutrient ratio can also influence bee physiology and longevity [98–103]. More
specifically, the macronutrients ratio in pollen may also influence the sensitivity of bees to pesticides.
This was demonstrated by testing diets with modified protein to lipid ratios (P : Ls) and several pollen
diets with different P : Ls [33]. The pollen-induced differences in pesticide sensitivity reported in our
study could not be explained by this nutritional factor since both pollen diets had similar P : Ls.
However, several studies have shown that the pollen phytochemicals quercetin and p-coumaric acid,
upon ingestion, can significantly enhance bee longevity [46,104] and also tolerance to several pesticides
[45–47]. However, the effects of these phytochemicals are concentration-dependent; lower concentrations
tend to have a positive effect on honeybee longevity ( p-coumaric acid at 5, 50 and 500 µM and quercetin
at 12.5, 25 and 250 µM), while higher natural concentrations (1000 µM) have no effects [45,46]. Similarly,
the reduced mortality risk upon exposure to pesticide was observed over a range of relatively low
natural concentrations (5, 50 and 500 µM) for p-coumaric acid. Higher concentrations (1000 µM)
increased or did not change the toxicity of pesticides [45]. Our results are, therefore, consistent with these
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data given that the S pollen, containing 637 µM of p-coumaric acid, was better in improving bee longevity
and tolerance to sulfoxaflor when compared with the BQ pollen (1491.6 µM of p-coumaric acid). This
former concentration might be more optimal for stimulating detoxification enzymes [43] and thereby
more quickly eliminating sulfoxaflor, as indicated by our results. It was not possible to quantify
quercetin, but its concentration below 33.09 µM probably falls in the range of beneficial concentrations
for both pollens, and, therefore, does not explain the differences in pollen quality.

In conclusion, our study demonstrated the modulation of pesticide toxicity by the nutritional state of
worker honeybees. Pollen availability and quality, by modifying the physiological background of bees,
can improve their ability to eliminate pesticides and withstand their detrimental effects (e.g. protective
effect of vitellogenin against oxidative stress), as observed with the high concentration of sulfoxaflor.
This nutritional modulation may cause a large range of pesticide responses in the field, given that the
abundance and composition of honeybee pollen diets can be highly variable across landscapes and
seasons [25,105–110]. A decline in resource availability and biodiversity in agro-ecosystems [111]
might, therefore, impair the bee’s ability to deal with pesticides [112], giving another strong argument
for the restoration of floral resource abundance and diversity in such habitats (introduction of
extensive grasslands and flower strips, protection of semi-natural habitats) [113,114]. Further research
is, therefore, needed to evaluate the influence of a larger range of pollens of different qualities on
pesticide toxicity to better mitigate the impact of exposure to pesticides.
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